Nofima

Raw material effects and novel control- and optimisation strategies in agri-food valorization

Nils Kristian Afseth, Sileshi Wubshet, Ingrid Måge, Ulrike Böcker, Jens Petter Wold, Kenneth Kristoffersen and Diana Lindberg

Nofima – Norwegian institute of Food, Fisheries and Aquaculture research

Enzymatic protein hydrolysis in agri-food valorization

Enzymatic protein hydrolysis in agri-food valorization

Enzymatic hydrolysis (the simple case)

Single protein digestion: -Myoglobin (trypsin)

LCMS Chromatogram

Enzymatic hydrolysis (the real case)

Intens

LCMS chromatogram of Hydrolysate from MDC

Wubshet, S. G. et al. Unpublished data, 2016

Bioanalytics and protein characterisation

Degree of hydrolysis – OPA / TNBS etc.

Size distributions – size exclusion chromatography

Detailed characterization – LCMS / NMR

Rapid and non-destructive spectroscopic measurements

Raman spectroscopy

NIR spectroscopy

FTIR spectroscopy

FTIR provides a biochemical fingerprint

Qualitative and quantitative information on protein structure

FTIR for monitoring enzymatic protein hydrolysis

Filme

Average protein size estimation / Degree of Hydrolysis (DH%)

FTIR spectra

FTIR for monitoring enzymatic protein hydrolysis

FTIR spectra - Chicken by-products

Ref:

Böcker, U., Wubshet, S., Måge, I., Lindberg, D., and Afseth, N.K. Fourier-transform Infrared spectroscopy for qualitative characterization of protein chain reductions in enzymatic hydrolysis, submitted manuscript.

Quantitative monitoring of enzymatic protein hydrolysis

Quantitative monitoring of enzymatic protein hydrolysis

Refs:

Wubshet, S., Måge, I., Bocker, U., Lindberg, D., Knutsen, S.H., Rieder, A., Airado-Rodriguez, D. & Afseth, N.K.. FTIR as a rapid tool for monitoring enzymatic protein hydrolysis of food processing by-products, submitted manuscript.

A spectroscopic platform for control and optimisation of biotech processes

Projects:

• LiqIR - Project leader: Prediktor (2015 - 2017) - Funded by the Regional research fund "Oslofjordfondet", with Biomega, Nutrimar, VEAS, and SINTEF ICT

Prediction of hydrolysis outcome based on raw material analysis

Prediction of hydrolysis outcome – the chicken and turkey case

32 samples of chicken and turkey rest raw materials were collected at Nortura Hærland, spanning variation in chemical composition

End-product quality prediction

By-product-characterisation (spectroscopy) + processing conditions:

(AMV = Average molecular weight measured by SEC)

Future protein hydrolysis – raw material variation can be handled using spectroscopy

Refs:

Wubshet, S. et al., Spectroscopic process monitoring in enzymatic protein hydrolysis of byproducts: A strategy for stable product quality, manuscript.

Future agri-food valorisation

Industry-scale processing

Åge Oterhals

In vitro digestion and bioactivity

Grain utilisation

Stefan Sahlstrøm

Fermentation

Fruits, berries and vegetables Grethe Iren Borge

Lipid utilisation

John-Erik Haugen

Raw materials quality

Eva Veiseth Rune Rødbotten

Sediment utilisation

Sissel Albrigtsen

Identification, optimization and screening of microbial oils grown on agrifood rest raw materials

Interrest and SingleCellOil projects

Ref:

Shapaval, Volha; Afseth, Nils Kristian; Vogt, Kjell Gjermund; Kohler, Achim. Fourier transform infrared spectroscopy for the prediction of fatty acid profiles in Mucor fungi grown in media with different carbon sources. *Microbial Cell Factories* 2014; Volume 13. p. 86

Concluding remarks

- Controlling and handling rest raw material complexity and variation is essential for future valorisation
- Industrial analytical tools are key factors in producing protein products of defiend qualities (e.g. sensorial, functional or bioactive properties) for higher paying markets:
 - Flexible processing for dealing with rest raw material heterogeneity and variations (e.g. depending on season or pre-production steps)
 - Possibilities for real-time process adjustments

Sustainable use of rest raw materials through development of profitable industrial processes and products

Acknowledgements

- Industry collaboration:
 - Norilia, Nortura, Biomega and Nutrimar
- Research collaboration:
 - SINTEF FA, SINTEF ICT and NMBU
- Funding from The Norwegian Research Council, Oslofjordfondet, the foundation for Research levy on Agricultural Products, and EU:
 - «HydrolyseMonitor», led by Nofima
 - «Chickenlysis», led by Nortura
 - «LiqIR», led by Prediktor
 - «Cycle», led by Sintef FA
 - «Interrest», led by Nofima
 - «SingleCellOil», led by NMBU
 - «BarleyBoost», led by Nofima
 - «Multiblock», led by Nofima
 - «Food quality imaging», led by Nofima

Nofima centre of excellence

SPECTEC

Rapid and non-destructive measurements for process optimisation

Leader: Jens Petter Wold

PEPTEK

A characterisation and processing plattform for future protein production

Leader: Ragnhild Whitaker