PLAST – EN EMBALLASJEVINNER!

Morgendagens plastløsninger for mat

7. Februar 2018

Dr. Siw Fredriksen, Advisor

Norner - The Polymer Explorers

A Global market leader for Industrial R&D services in Polymers - by exploring opportunities and discover Sustainable Solutions

Plastics – the material for the 21st Century

- Plastics are an integral part of our daily life
 - and will continue to be so
 - competitive cost/performance
 - light weight
 - strong
 - protects food and reduces food waste
 - saves water and energy
- Plastics has numerous application opportunities
- Packaging is the largest market segment for plastics
- PE, PP and PET are the main polymers in packaging

Plastics volumes and Plastic waste - challenges

World and EU plastics production data

Includes plastic materials (thermoplastics and polyurethanes) and other plastics (thermosets, adhesives, coatings and sealants). Does not include: PET fibers, PA fibers, PP fibers and polyacryls-fibers. Source: PlasticsEurope (PEMRG) / Conversio Market & Strategy GmbH

- Plastics production fourfold increase 2014 2050
- Increase in oil use from 5 % to 20 %

THE NEED FOR A NEW AND CIRCULAR PLASTICS ECONOMY

WHAT ARE THE NEW FEEDSTOCKS FOR FUTURE PLASTICS?

Generation 1 Carbohydrates (sugar, starch), oil crops

Available & already there Competing with food & feed

Available but more difficult Not competing with food & feed

Cellulose, lignin

Generation 2

Generation next CO₂, methane (GHG's) Algae

Newcomers More or less available May/may not compete with food & feed

RENEWABLY SOURCED POLYMERS - WELL, BUT WHICH?

- Packaging is the largest market segment for biobased polymers
- Modest volume growth now expected (20 %/5 years); PET dominates

GREEN POLYETHYLENE FROM SUGAR CANE – BRASKEM

Plastic Renewable source Carbon reduction

The Polymer Explorers

$\mathsf{PET}-\mathsf{W}\mathsf{ELL}$ developed recycling scheme

(Polyethylene terephthalate) PET

PET – BIOBASED PET IS A DROP-IN SOLUTION

The Polymer Explorers

BIOBASED PEF – A NEW VALUE CHAIN IS REQUIRED

https://www.avantium.com/press-releases/synvina-press-release/

http://www.virent.com/news/virent-bioformpx-paraxylene-used-for-worlds-first-pet-plastic-bottle-made-entirely-from-plant-based-material/

Page 11

PLA* – «NATURALLY BORN BIO» - FROM PLANT SUGAR

Improved PLA performance opens up high added value markets

NORNER CONVERTS CO₂ TO POLYMERS

10 years experience in making polymers and polyols from CO₂ in Norner's lab

Application opportunities demonstrated: 40 % CO₂ in polymer – replacing oil!

of Norway

he Research Council

The next step: Small scale pilot 2018/2019

CONSUMPTION AND PRODUCTION

13 CLIMATE ACTION

NORNER – DEVELOPMENT OF BIO-BASED POLYMERS AND MATERIALS

Biobased composites

Biobased polymers

Polymer made by bacteria

We need to solve the «circular challenge» for plastics of today $% \mathcal{W}$

Three distinct transitions strategies to accelerate the shift towards the New Plastics Economy (share of plastic-packaging market by weight)

FUTUREPACK – FUTURE PLASTICS PACKAGING IN THE CIRCULAR ECONOMY

The FuturePack project will develop "a comprehensive knowledge platform for the Norwegian production of sustainable packaging materials from *Norwegian biomass* and *polymer waste* resources in accordance with the principles of *circular economy*"

- \geq 5 Norwegian RTO's
- 10 Norwegian industry partners
- The Research Council of Norway \geq
- International IAB
- Duration: 4 years \geq

FUTUREPACK – MONOMERS FROM BIOMASS AND PLASTICS WASTE

Conversion to monomers by pyrolysis ethylene – for PE propylene – for PP

FUTUREPACK - PE AND PP FROM BIOMASS?

- Novel approach: Advanced thermochemical (pyrolysis) process for ethylene and propylene
 - Pyrolysis: High temperature, no oxygen
- High hopes: Bio-based virgin PE and PP

FUTUREPACK - PE AND PP FROM WASTE PLASTICS?

- New: Chemical recycling of waste plastics to ethylene and propylene (pyrolysis)
 - Pyrolysis: High temperature, no oxygen
- High expectations: «Laminate fix» make virgin PE and PP

FUTUREPACK - PE AND PP FROM WASTE PLASTICS?

- New: Chemical recycling of waste plastics to ethylene and propylene (pyrolysis)
 - Pyrolysis: High temperature, no oxygen
- High expectations: «Laminate fix» make virgin PE and PP

FUTUREPACK – PACKAGING DESIGN FOR RECYCLING

- Use of recycled plastics in packaging
- Packaging design for recycling

Recycled Plastics – retain performance

Solve challenges Material quality Collect & Sort Colours Virgin PE, PP Migration/chemicals Labels PCW «BINC» - Sort, single stream Odour Taste Inks Adhesives Polymer properties PCW Washing (cold/hot) Polymer performance - Sort, broad Product consistency Content residues/emptying Documentation Development Innovation ✓ Effect of improved sorting \blacktriangleright Design for recycling > Novel additivation packages ✓ Effect of washing > Novel inks & adhesives ✓ Effect of re-extrusion/processing > Compatibilisers ✓ Migration/Chemicals \succ Material enhancers ✓ Quality of recyclate Page 22 Page 22 Nofima PFI O Ostfoldforskning INTNU bama EEW O ELOPAK O Mills NorgesGruppen Protoco Corkla ROAF The INEOS

DESIGN FOR RECYCLING - NO MORE MULTILAYERS!?

Ostfoldforskning INTNU bama ESM @ ELOPAK O Mills NorgesGruppen Nortura Orkla ROAF TIME INEOS

- 1) Multimaterials for non-barrier applications replace with monomaterial laminates
- Case: Substitute PET/PE or PP/PE laminates with PE/PE or PP/PP
- Evaluate: Material composition, properties and packaging
- Innovation: Lamination technology (PE vs. PUR glue)

- 2) Multimaterials with gas barrier for long shelf life replace current solutions with recyclable solutions
- Case: Substitute PE/PA laminates with PE/PE, opt. w/EVOH
- Evaluate: Shelf life and storage conditions
- Innovation: Active packaging for shelf life extension

PLASTICS - PACKAGING MATERIAL FOR THE FUTURE

Norner takes an active role with clients and partners in sustainable plastics development

The Polymer Explorers

Norner powers up for the future

Follow us on Facebook

www.norner.no Follow us on LinkedIn Follow us on Facebook

